Skip to main content

2220. Minimum Bit Flips to Convert Number

題目

完整題目

A bit flip of a number x is choosing a bit in the binary representation of x and flipping it from either 0 to 1 or 1 to 0.

For example, for x = 7, the binary representation is 111 and we may choose any bit (including any leading zeros not shown) and flip it. We can flip the first bit from the right to get 110, flip the second bit from the right to get 101, flip the fifth bit from the right (a leading zero) to get 10111, etc. Given two integers start and goal, return the minimum number of bit flips to convert start to goal.

Example 1

Input: start = 10, goal = 7
Output: 3
Explanation: The binary representation of 10 and 7 are 1010 and 0111 respectively. We can convert 10 to 7 in 3 steps:
- Flip the first bit from the right: 1010 -> 1011.
- Flip the third bit from the right: 1011 -> 1111.
- Flip the fourth bit from the right: 1111 -> 0111.
It can be shown we cannot convert 10 to 7 in less than 3 steps. Hence, we return 3.

Example 2

Input: start = 3, goal = 4
Output: 3
Explanation: The binary representation of 3 and 4 are 011 and 100 respectively. We can convert 3 to 4 in 3 steps:
- Flip the first bit from the right: 011 -> 010.
- Flip the second bit from the right: 010 -> 000.
- Flip the third bit from the right: 000 -> 100.
It can be shown we cannot convert 3 to 4 in less than 3 steps. Hence, we return 3.

Constraints

  • 0start,goal1090 \le start, goal \le 10^9

題目難易度

Easy

解題想法

把 start 和 goal 轉成二進位,再將兩個轉成二進位的數字補 0 的方式將長度一致,最終將二進位的字串每個位元兩兩比較去看是否需要去做轉換。

初試

  • Time Complexity: O(numberofmaxbits)O(number of max bits)
  • Space Complexity: O(1)O(1)
/**
* @param {number} start
* @param {number} goal
* @return {number}
*/
var minBitFlips = function (start, goal) {
let s = start.toString(2);
let g = goal.toString(2);

const sub = Math.max(s.length, g.length) - Math.min(s.length, g.length);
if (s.length > g.length) {
g = "0".repeat(sub) + g;
} else {
s = "0".repeat(sub) + s;
}

let r = 0;
for (let i = 0; i < s.length; i++) {
if (s[i] !== g[i]) r++;
}
return r;
};

可修改地方

可嘗試使用程式語言的運算符來完成 Bitwise AND (&)、Bitwise XOR(^)和 Right shift assignment (>>=)

  • Time Complexity: O(numberofbits)O(number of bits)
  • Space Complexity: O(1)O(1)

由於不需要轉成二進位的 string,

/**
* @param {number} start
* @param {number} goal
* @return {number}
*/
var minBitFlips = function (start, goal) {
let xor = start ^ goal;

let r = 0;

while (xor) {
r += xor & 1;
xor >>= 1;
}

return r;
};